
46 The Delphi Magazine Issue 38

Surviving Client/Server:
Interactive Query Building
by Steve Troxell

As databases increase in size
and complexity, so do the

demands put on them by users. Try
as we might to build the most fea-
ture complete applications we can,
users always seem to want a little
bit more. By designing our applica-
tions to be data-driven wherever
possible, we can allow users some
degree of flexibility in making the
system do things their way. The
specific case I want to talk about
this month is interactive query
building.

When dealing with huge masses
of data, many times users need to
do specific things to specific
groups of data. Many times these
groups are hard to predefine in
static forms in an application. For
example, the marketing staff may
be pulling many different subsets
of customers from their database
throughout the year to target for
solicitation for new business. Let’s
get all the people who bought
Super-Widgets within the last six
months and send them a mailing
about the new Mega-Widgets we’ve
just come out with. Let’s find
everyone who subscribes to
Coding Commando magazine and
see if they’ll buy the fresh new
book Rapidly Coding Complete
Development.

Likewise, for a business with a
large number of employees, there
may be many uses for custom
subsets for purposes of benefits,
payroll, project management, etc.

SQL is a great tool for getting to
data in the system without relying
on having a programmer around to
construct a specific screen in a
specific application in advance. In
fact, SQL was conceived as a tool to
be used by information specialists
to increase data accessibility with-
out the need to tie up a skilled pro-
grammer. SQL requires a bit of skill
itself, but not nearly the same skill
as writing a Delphi or C++ program

to extract data. Even so, SQL in the
raw may still be a little demanding
for some segment of your user base.

If we want to give our users the
ability to define custom subsets of
data we could ask them to supply
syntactically correct SQL clauses
which we could dynamically
assemble into full queries and exe-
cute against the database. This
approach would require the users
not only to understand SQL syntax
and operations, but also to know
the field names and encoding
schemes in our database.

As an alternative, there are com-
mercially available ‘visual query
builder’ components which we
could plug into our applications to
allow users to build SQL clauses by
selecting field names and opera-
tions from pick lists. While this
relieves the need to understand
SQL directly, it still requires
technical knowledge of the table
structure and data.

Almost all database applications
employ code tables, or lookup
tables, to contain lists of related
data codes and their descriptions.
For example, to identify a tempo-
rary employee on a form, most
applications will not require users
to enter the code TMP in an Employee
Type edit box. Instead, they will
probably provide a dropdown list
and allow the user to select the
entry Temporary from the list of all
possible employee types. This
dropdown list would be populated
from the code table for employee
type. The application would trans-
late the clear text description Tem-
porary to the code value TMP for
storage in the database. Through-
out the application, the user only
sees the clear text description and
is most likely totally unaware of the
encoding behind the scenes.

If we are making data entry this
easy for users, let’s use the same
concept to simplify how we can let

users define their own data sub-
sets as well. Our users are already
very familiar with the range of
values available to them for the
various data fields of interest. So
why not provide them with a query
building interface that leverages
what they already know instead of
demanding that they learn new
skills?

A Bit Of Terminology
Before we proceed, it would be
helpful to get a clear understand-
ing of the terminology I’ll be using
to describe this query building
system. The purpose of this
system is to define a subset of data:
specifically, in our example, a
subset of employees. Since we are
not operating on the entire popula-
tion of employees, we call this a
qualified subset of employees. We
call the conditions that define the
subset the qualifiers. For example,
a subset may be defined by the
single qualifier ‘hourly employee’;
another subset may be defined by
multiple qualifiers ‘salaried, regu-
lar employees in the accounting
department.’

Each individual piece of data
that is eligible to make up a quali-
fier is called a filter field. In the
example used above, the data field
defining whether an employee is
hourly or salaried is a filter field,
eligible for use in any set of
qualifiers.

The distinction between filter
fields and qualifiers is that filter
fields are simply those data fields
that we are allowed to use to define
subsets of data. This is typically a
static list. Qualifiers are what we
construct with the filter field build-
ing blocks to define subsets of
data. There may be many different
sets of qualifiers, each defining a
different cross-section of data, and
each assembled from the same
unchanging pool of filter fields.



October 1998 The Delphi Magazine 47

System Architecture
There are several critical elements
in the architecture for the system
we will construct here. In many
ways this is an oversimplified
architecture to make it easier to
explain the concept. At the end of
the article we will discuss ways to
extend the system for more
powerful uses.

There are three requirements of
our system. First, all filter fields
must be contained within a single
table. No multi-table joins are
allowed in this simplified system.
Second, all filter fields must con-
tain discrete data values defined
though some form of lookup table.
Third, all filter fields must be
predefined in a static table.

Obviously, these conditions dic-
tate that the user will not have the
full range of data fields available to
them when defining a subset. This
limitation can be taken as the cost
of the ease of use of the system. In
most cases, users will not need the
full range of data fields and it would
be fairly straightforward to pro-
vide them with a well-rounded list
of candidate filter fields. We will
also see that it is easy to add addi-
tional filter fields at a later time
without recoding the system.

For our example, we will allow
users to select from the Employees
base table, using any combination
of three filter fields: empType,
empSalaryOrHourly, and empFullOr-
PartTime. The code values for these
fields are stored in a single lookup
table called SystemCodes as shown
in Listing 1. Back in the May 1998
issue, we discussed this technique
of consolidating multiple logical
code tables into a single physical

database table. We can still use
this query-building system if our
code tables are broken up into sep-
arate database tables: it’s just
much easier this way. Also, note
that the code table scheme we
talked about in the May issue
allowed for a mixture of consoli-
dated and standalone code tables,
all accessed in one systematic
manner.

We set up our list of available
filter fields in a table called
QualifierFilters as shown in List-
ing 2. In this table we provide a
unique identifier for each filter
field, a description which we will
provide in the user interface, a ref-
erence to the applicable code
table, and an association with the
actual data field in the table
definition.

To this point we’ve defined all
the data necessary to present our
query-building user interface. The
only thing left to do is provide a
place for users to store their quali-
fier definitions. Listing 3 shows the
structure for the Qualifiers table
(for MS SQL Server).

The Qualifiers table contains all
the qualifier sets we’ve defined.
Each set is identified by the quaID
field and there may be one or more
rows in each qualifier set. Each row
in the table is uniquely identified
by the quaRecID column, which is
simply an autoincrementing field
starting at 1000. We started at 1000
simply for illustration purposes to
help distinguish its values from the

quaFilterID field, which is a link to
the QualifierFilters table defin-
ing which filter field we are using.
Finally, quaValue is the actual code
value we will associate with this
particular filter field.

For example, if we wanted a set
of all salaried, full-time employees,
Listing 4 shows the values we
would have in Qualifiers. If we
relate the quaFilterID column
back to the QualifierFilters table,
we see that a value of 1 ties to the
SalaryOrHourly code table and a
value of S means salaried. Also, a
quaFilterID of 2 ties to the
FullOrPartTime code table and a
value of F means full-time. The
quaID field is just arbitrarily
assigned by the system to distin-
guish this set of qualifiers from
other sets we might define.

You might think that the
quaRecID autoincrement field is
unnecessary because quaID and
quaFilterID is enough to uniquely
identify any row in Qualifiers.
This would be true if we prevented
users from specifying more than
one value for any given filter field.
For example, suppose we wanted a
set of all student and summer help
employees. Listing 5 shows the
values that we would have in
Qualifiers, and you can see we
would have duplication in the
quaFilterID column.

From the examples shown in
Listings 4 and 5, it should be
evident that our query-building
engine will assume a logical AND

SystemCodes
codTable codCode codDesc
EMPTYPE            CON         Contractor/consultant
EMPTYPE            INT         Intern
EMPTYPE            REG         Regular
EMPTYPE            STU         Student
EMPTYPE            SUM         Summer help
EMPTYPE            TMP         Temporary
EMPTYPE            Z           <None>
FULLORPARTTIME     F           Full time
FULLORPARTTIME     P           Part time
SALARYORHOURLY     H           Hourly
SALARYORHOURLY     S           Salaried

➤ Listing 1

QualifierFilters
qlfID qlfDescription qlfCodeTable qlfDataField

1     Hourly/salaried      SALARYORHOURLY  empSalaryOrHourly
2     Full time/part time  FULLORPARTTIME  empFullOrPartTime
3     Employee type        EMPTYPE         empType

➤ Listing 2

CREATE TABLE Qualifiers(
quaRecID int IDENTITY(1000,1),
quaID smallint,
quaFilterID smallint,
quaValue varchar(20),
PRIMARY KEY (quaRecID)

)

➤ Listing 3

Qualifiers (example values)
quaRecID quaID quaFilterID quaValue
1000     100   1           S
1001     100   2           F

➤ Listing 4



48 The Delphi Magazine Issue 38

between different filter fields and a
logical OR between multiple
references to the same filter field.

The Front End
The are two sides of the query
building process: the front end,
where, the user defines their quali-
fiers, and the back end where that
definition is turned into workable
logic to manipulate the database.
While the back end is where all the
action will take place, there are a
few challenges in implementing the
front end, so let’s take a look at that
first.

Some form of grid is called for
here since the user will be select-
ing one or more filter field entries
to construct their qualifiers. In con-
cept we have a two column grid
where the cells in the first column
have a dropdown list of all the
available filter fields and the cells
of the second column have a
dropdown list of all the code
values available for that particular
filter field (see Figure 1). This is the
main challenge of the front end.
Since each row can represent a dif-
ferent filter field with a different set
of code values, the contents of the
dropdown list for the second
column can vary from row to row.
Delphi’s TDBGrid was not designed
with this possibility in mind, but
we will see how we can make it do
our bidding without resorting to a
custom descendant component.
Most likely you will have your own

in-house TDBGrid descendant or a
third-party grid control, so your
specific implementation obviously
will vary.

The main query (the one the
TDBGrid is bound to) is based on the
Qualifiers table of course (see
Listing 6). We join to the
QualifierFilters table in order to
pick up the code table association
for that particular qualifier. The
columns in the grid are defined
through the TDBGrid.
Columns property, which
automatically provides
us with a dropdown list
edit control if we either
bind the column to a
lookup field in the
dataset, or provide a list
of strings ourselves to
serve as the dropdown
list contents.

The first column in the
grid is bound to the
quaFilterID field but dis-
plays the filter name.
This is a simple lookup
field definition using a
secondary query to fetch
the rows from the
QualifierFilters table
(Listing 7), associate
Qualifiers.quaFilterID
with QualifierFilters.
qlfID, and return

QualifierFilters.qlfDescription
as the lookup value. There is noth-
ing really special about the setup
of column one. The dropdown list
is provided for us by virtue of
being bound to a lookup field. This
suits us fine for this column since
our dropdown list contents will
remain static as we move from row
to row (see Figure 2).

The second column is more
problematic since we must change
the dropdown list contents
depending on which filter field the
row represents. Since we are stor-
ing the code value and displaying
the code description, we naturally
tend to think of using a lookup
field. We might be tempted to
create a lookup query like this:

SELECT codCode, codDesc

FROM SystemCodes

WHERE codTable = :qlfCodeTable

We would use a parameterized
query here tied to the main dataset
in a master-detail relationship so
that as we moved from row to row
in the main dataset, we would
always have the appropriate code
table dataset for that filter field.
Then we would simply create a

Qualifiers (example values)

quaRecID quaID quaFilterID quaValue
1000      100    3            STU
1001      100    3            SUM

➤ Listing 5

SELECT quaRecID, quaID, quaCode, quaFilterID, qlfCodeTable
FROM Qualifiers, QualifierFilters
WHERE quaFilterID = qlfID AND

quaID = :quaID

➤ Listing 6

SELECT qlfID, qlfDescription, qlfCodeTable
FROM QualifierFilters
ORDER BY qlfDescription

➤ Listing 7

➤ Top: Figure 1

➤ Bottom: Figure 2



October 1998 The Delphi Magazine 49

lookup field binding quaCode to the
codCode and returning the codDesc
as the code description.

This approach does indeed work
fine as far as keeping the actual
dropdown list in sync with the
proper values for any given row.
But since the contents of the
lookup dataset change when we
move from row to row, the VCL
cannot properly maintain the
values in other rows, since their
data values do not always corre-
spond to what is currently avail-
able in the lookup dataset.
Furthermore, as we moved from
row to row we would constantly be
firing off queries to the server to
populate the lookup dataset. A
better design would attempt to
eliminate extraneous queries
resulting from simple user
interface navigation.

So what do we do? One way or
another we have to emulate a
lookup field in code. To avoid
extraneous queries to fetch the
code table values every time we
moved among the rows in Quali-
fiers, I chose to implement a code
table cache. The QualifierFilters
table identifies all possible code
tables that might be needed, so we
simply load all possible code
values and their descriptions inter-
nally into TStringLists and use
code to populate the grid cells and
dropdown lists as needed.

I’ll describe the code table cache
briefly: you can get full details of its
implementation from the code sup-
plied on this month’s disk. The
cache consists of a single
TStringList containing the names
of all the code tables identified in
QualifierFilters. For each code
table entry in the string list, the
Objects property refers to another
TStringList containing all the code
values and descriptions for that
code table (in <value>=<descrip-
tion> format).

To set up our own dropdown list
for a grid cell, we use the
TDBGrid.Columns.PickList prop-
erty. This property holds the
TStringList to use for the
dropdown list for all cells in the
column. Since there is one pick list
per column, we need to clear it and
repopulate it as we move between

rows in the dataset. We can easily
do that with the AfterScroll event
handler.

The second column of our grid is
bound to the quaCode field. This
holds the code value, and we want
to display the code description.
Since we have all the code values
and descriptions cached in
memory, we can add an OnGetText
handler for this field to lookup the
code value in the cache and return
its description. Likewise, when we
pick a new code from the
dropdown list, we are really pick-
ing its description and writing that
to the quaCode field. So we also need
to provide an OnSetText handler to
do the reverse by looking up the
code description in the cache and
returning its matching value.

Voila! We now have a lookup
column in a grid whose dropdown
list contents vary from row to row.

The Back End
The whole point of this endeavor is
to take the information the user
has given us and formulate an SQL
query out of it. More specifically,
we need to formulate an SQL query
WHERE clause. Figure 3 shows an
example set of qualifiers. This cor-
responds to data in the Qualifiers
table as shown in Listing 8. From
this we want to obtain the SQL
query shown in Listing 9.

Obviously, we’ll need a query to
give us a dataset like that shown in
Listing 8, but we’ll also want to join
to the QualifierFilters table in
order to include the qlfDataField
column which tells us which filter
fieldname to use (refer back to
Listing 2). Then we simply loop
through this dataset and for each
row, we transform the values in
qlfDataField and quaCode into an
expression for the WHERE clause.
The expressions are connected by
AND so we get all rows that match all
our qualifiers.

As we are stepping through the
rows in Qualifiers, we check for
duplication in the quaFilterID
field. As long as there is duplica-
tion, we build a ‘sublist’ of expres-
sions for that particular filter field,
concatenated by ORs. When we’ve
got them all, we encase the whole
thing in parentheses and use that

as the next ‘single’ expression in
our WHERE clause. The coding for
this is actually fairly straightfor-
ward and an example of it is
included in the demo program on
the disk.

Taking It Further
The system I’ve described here
has been scaled down and has
severe limitations as it stands for a
database of any complexity.
Obviously, the physical code
tables shown here are oversimpli-
fied, but even if we have more com-
plex code tables, we only need a
value and a description here. So
using the scheme we discussed
back in May, there still wouldn’t be
too much deviation from what I’ve
laid out here.

We should also open up the can-
didates for filter fields by allowing
field values that aren’t necessarily
expressed by code tables. For
example, we may want to select
records based on postal code (zip
code in the US). We obviously
don’t want to pick this from a
dropdown list, but would rather
key it in directly. We may even
want to select records based on
date fields, or even a range of
dates. We can handle this by
extending the QualifierFilters
table to identify different classes of
data field. Then, just like we
currently change the contents of
the dropdown list based on which
filter field we are on, we might
change the cell editor control
altogether based on which filter
field we are on. For date fields we
might perhaps pop up a calendar
control and enable a third column
in the grid so that we can specify a
range of dates for a single filter
field.

The concept of user-defined
qualifiers can be used for other
functions as well. Users could also
select fields to update with new
values and let the qualifiers define
the range of records that will
receive this ‘mass update’. We can
also use this information when
entering a new employee, cus-
tomer, or whatever, to default cer-
tain fields to specific values
depending on what ‘profile’ the
new entity matches.



50 The Delphi Magazine Issue 38

Conclusion
When defining selection criteria,
users will think in terms such as ‘I
want to deal with all the part time,

hourly employees’, not ‘I
want to deal with all the
employees where
StaffType = ‘P’ and
WageType = ‘H’’. All things
being equal, any user
interface that operates
closer to how the user
thinks, and makes fewer
demands on the user to
translate their thinking

into computer terms, is a better
user interface.

The sample code on the disk
includes a script to create and

populate the qualifier tables we
talked about in this article. The
code and script was written for a
Microsoft SQL Server database, so
you may have to make adjust-
ments to actually execute it on
your system.

With this issue, I will be cutting
back to quarterly instalments of
Surviving Client/Server. Increasing
work pressures make it more and
more difficult for me to continue
month in and month out to provide
the quantity and quality of mate-
rial I think you deserve. Look for-
ward to another exciting episode
in January!

Steve Troxell is a software
engineer with Utimate Software
Group in the USA. You can
contact him at
Steve_Troxell@USGroup.com

➤ Below: Listing 9

➤ Figure 3

➤ Above: Listing 8

Qualifiers QualifierFilters

quaRecID quaID quaFilterID quaCode qlfDataField
1000        100    1           H         empSalaryOrHourly
1001        100    3           CON       empType
1002        100    3           REG       empType
1003        100    2           F         empFullOrPartTime

SELECT * FROM Employees
WHERE
(empSalaryOrHourly = "H") AND
((empType = "CON") OR (empType = "REG")) AND
(empFullOrPartTime = "F")

www.itecuk.com
For news, next issue
contents and more


	A Bit Of Terminology
	System Architecture
	The Front End
	The Back End
	Taking It Further
	Conclusion

